

Deep Learning for Recognizing Bat Species and Bat Behavior in Audio Recordings

Markus Vogelbacher, Hicham Bellafkir, Jannis Gottwald, Daniel Schneider, Markus Mühling, and Bernd Freisleben

University of Marburg, Germany vogelbacher@informatik.uni-marburg.de

perspective=central; spec_g=150.0; radius=10.0; sextic=rotate(sextic_rot_1.xAxis);

Motivation

- Bats (*Chiroptera*) are excellent indicators for ecosystem health
- Bats emit different sounds to orient themselves and to communicate
- Monitoring bat populations is a very tedious task
- Automated methods are required

© C. Robiller / Naturlichter.de. [Link]

Behavior analysis offers further insights

Audio Processing

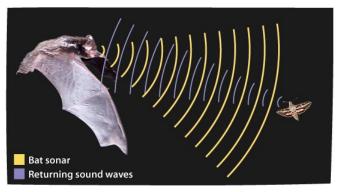
- Time expansion
 - \rightarrow expands time domain by a factor of 10
 - \rightarrow reduces frequencies by a factor of 10
- Different ways to input audio to machine learning models
 - Raw audio
 - Linear spectrograms
 - Mel-scaled log spectrograms
 - Learnable filters (e.g., LEAF [1])

Bat Calls

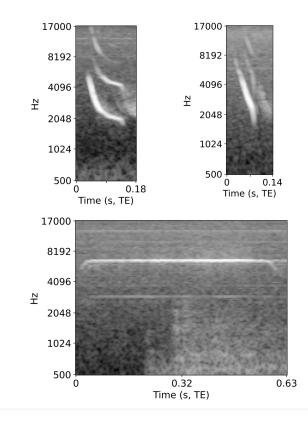
- Three main classes of bat calls
 - Echolocation calls for orientation
 - Feeding buzzes for hunting prey
 - Social calls for communicating with conspecifics
- Echolocation calls are widely used to determine the corresponding species

Echolocation Calls

- Bats emit and receive ultrasonic sounds to orient themselves
- Usually short pulses separated by longer periods of time

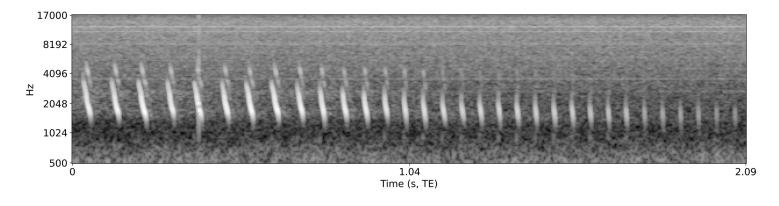


© Arizona Board of Regents / ASU Ask A Biologist. [Link]



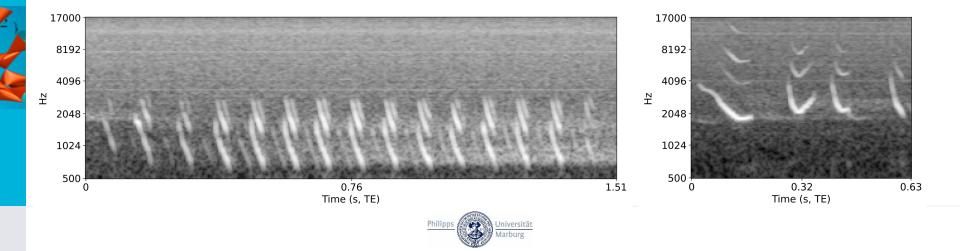
Feeding Buzzes

- Used to precisely locate prey while hunting
- Fast and accelerating sequence of ultrasonic calls
- Followed by an attempt to capture the target



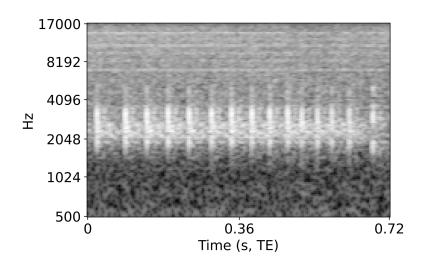
Social Calls

- Often audible for humans
- Great variety due to a wide range of applications
- More complex than other call types



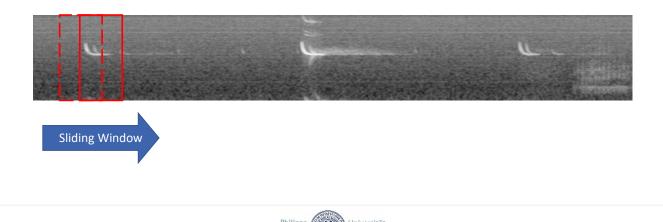
Challenges

- Different call lengths
- Similar calls
- Noises (e.g., crickets)



Related Work

- State-of-the-art approaches use deep learning (e.g., [2,3,4])
- Usually sliding windows and classifying the corresponding content [2,3]
- Not well suited for different call lengths



Our Approach

- Object detection in spectrograms to capture the boundaries of each call precisely
- 3 classes (i.e., behaviors)
 - Echolocation Call
 - Feeding Buzz
 - Social Call

• Species recognition with 19 species living in Europe and Northern Africa

Pre-processing

- Time-expand (TE) all audio recordings by a factor of 10
- Resample all audio recordings to 96 kHz
- According to the Shannon-Nyquist sampling theorem, frequencies up to 48 kHz (TE) can be captured
- Mel-spectrograms are used as a visual representation

Spectrograms

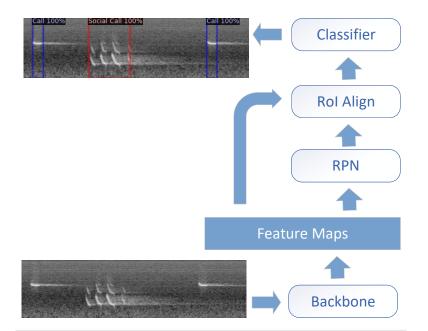
- Generate Mel-spectrograms as our input
 - 128 Mel bins
 - Window size of 23 ms (TE) and an overlap of 84.5%
 - 500 Hz to 17 kHz (TE) are considered

• Resulting in spectrograms of 2777 x 128 px for a 1s (10s TE) audio snippet

Architecture

- Faster-RCNN approach with different backbones
 - ResNet-50 + FPN
 - ResNeXt-101 + FPN
 - VitDet-Base [5]

FPN: Feature Pyramid Network



Experiments

Two data sets with hold-out test sets:

- Tierstimmenarchiv¹ (TSA)
 - Recorded on tape and digitized
 - 30,798 bounding boxes
 - Species and behavior annotations
- Audio exploratories
 - Passively recorded with AudioMoth² devices
 - 4,259 bounding boxes
 - Only behavior annotations

¹ <u>https://tierstimmenarchiv.de</u> ² <u>https://www.openacousticdevices.info</u>

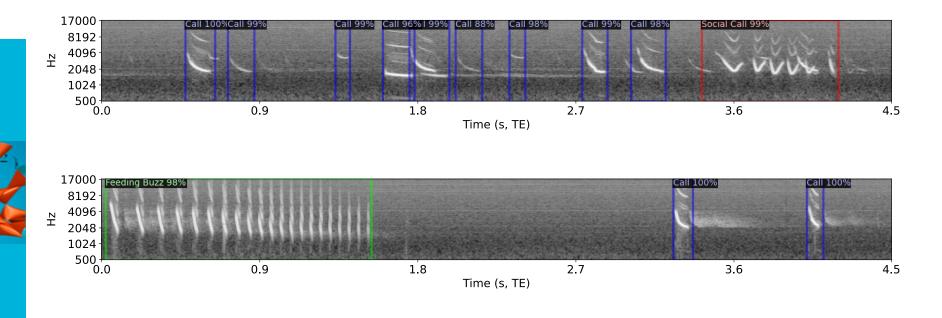
2

- Bat behavior recognition on TSA data set
- Average Precision @ IoU=0.5

Method	Echo Call	Feeding Buzz	Social Call	Mean (mAP)
ResNet-50	0.975	0.953	0.952	0.960
ResNeXt-101	0.978	0.923	0.946	0.949
ViTDet-Base	0.984	0.983	0.956	0.974

- Bat behavior recognition on Audio exploratories data set
- No evaluation of feeding buzzes due to lack of instances
- Average Precision @ IoU=0.5

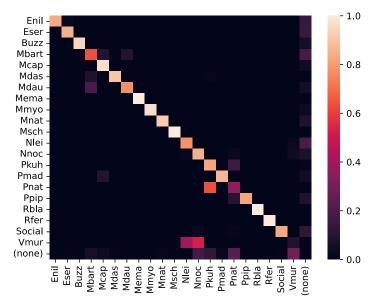
Method	Echo Call	Social Call	Mean (mAP)
ResNet-50	0.958	0.913	0.936
ResNeXt-101	0.949	0.909	0.929
ViTDet-Base	0.957	0.934	0.946



Bat species recognition on TSA data set

Mean Average Precision @ IoU=0.5

Method	mAP
ResNet-50	0.803
ResNeXt-101	0.824
VitDet-Base	0.862



- Comparison to a state-of-the-art sliding window method
- TSA data set

Method	Echo Call Detection (AP)	Species Recognition (mAP@loU=50%)
[3]	0.722	0.806
VitDet-Base	0.988	0.862

Conclusion

- Bat call recognition with object detection
 - Precise detection of call boundaries
 - Improves classification performance based on echolocation calls
- First approach to automated bat behavior recognition
- State-of-the art bat species recognition performance
- Up to 97.4% mAP in behavior recognition and up to 86.2% mAP in species recognition

Future Work

- Use smaller architecture to facilitate execution on edge devices
- Take all call types into account for species recognition
- Classify social calls into subclasses
- Use self-supervised approaches

References

[1] N. Zeghidour et al., "LEAF: A Learnable Frontend for Audio Classification", Int. Conf. on Learning Representations (ICLR), 2021.

[2] O. Mac Aodha et al., "Bat Detective - Deep Learning Tools for Bat Acoustic Signal Detection", PLOS Computational Biology, 2018.

[3] H. Bellafkir et al., "Bat Echolocation Call Detection and Species Recognition by Transformers with Self-Attention", Int. Conf. on Intelligent Systems and Pattern Recognition (ISPR), 2022.

[4] I. Zualkernan et al., "A Tiny CNN Architecture for Identifying Bat Species from Echolocation Calls", Int. Conf. on Artificial Intelligence for Good (AI4G), 2020.
[5] Y. Li et al., "Exploring plain vision transformer backbones for object detection", Eur.

Conf. on Computer Vision (ECCV), 2022.

