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Physics-Informed Machine Learning 

physicsdata physicsdataphysicsdata
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Use Case I : Tracker Faults in Solar Power Plants

Challenge: no labeled faults
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Fault simulator using data + physics

+

Train CNN classifier

Operational data Physical model Synthetic Faults

Power output of faulty systemHealthy power output
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Results: Precision-Recall of Fault Detection

Zgraggen, Jannik, et al. “Physics informed deep learning 
for tracker fault detection in solar power plants” (2022). 

PI deep learning (DL) is superior to DL alone
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Use Case II : Fault Diagnostics of Gas Turbines

Challenge: physical model does not cover unit-to-unit variability
Fault Type

Diagnostics
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Transfer Learning for Digital Twins
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Accurate predictions for a specific unit, also with little data.

Image courtesy: Sanaye, Sepehr et al. (2020)
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Results: Degradation Trending and Fault diagnosis

Hybrid approach is superior to physical model
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Evaluation of monitoring data 
The main goal of the hybrid model is to remove the variation 
caused by different operation conditions, and thus detect 
deviations earlier. Thus, the deviations are detected through 
residual evaluation. In the statistical field several different 
trending and failure decision algorithms are available, and in 
[19] the most practical algorithms are described in detail. When 
a batch of data from one day of operation is evaluated, one can 
expect to see a residual as illustrated in figure 10 (by the hybrid 
model residuals).  The residual is centred on 0, with a low 
variance, when the GT is performing as expected. However, 
several different mechanisms will affect the residuals, such as 
degradation, sensor faults and hardware failure. In many 
situations, time-based progressions of the deviations are of 
interest, especially when diagnosing any potential failures.   
 
To illustrate the hybrid model response for a failing sensor, a 
sensor slow degradation rate is superimposed on unseen TAT 
data collected after the hybrid corrector development. The 
superimposed trend is shown in Figure 11. Without knowing 
the true value for the correct sensor reading, this sensor failure 
would be difficult to detect at an early stage.  
 
The sensor degradation is imposed on the operational data is a 
linear trend with a degradation rate of: 
 

dayC
dt

dT
/18.0 °°°°====  

 
To illustrate the impact of this degradation rate on fault free 
measurement, figure 11 shows the both the operational fault 
free data as well as the data with superimposed degradation 
trend.  
 

 
Figure 11: Sensor failure superimposed on fault free 

operational data 
 

To provide an example of how this degradation trend is 
revealed and detected by the hybrid model, figure 12 shows the 
hybrid model residual as well as the superimposed degradation 

trend in time frame of 14 days. In addition, the surrogate model 
residual is shown. Without focusing on optimal detection time, 
it can be recognized that when the sensor has drifted circa 1°C, 
the residual passes the uncertainty of band of ±1°C that was 
seen in the model development error. The hybrid residual 
follows the superimposed degradation trend rather well. The 
difference between the two can be attributed to model error, as 
well as missing parameters affecting the performance and 
sensor noise. The surrogate model error fluctuates rather much 
around the superimposed degradation trend; this is basically the 
high variance error as seen in figure 9. In a practical 
application, this would lead to a prolonged time for detection of 
the degraded sensor.  

 

 
 
Figure 12: Residual evaluation of 1st principle model 

and hybrid model 

CONCLUSIONS 
Monitoring today is carried out in centralized M&D centres 
where experts analyse data from multiple plants. Efficient 
monitoring tools are needed to support the personnel in the 
evaluation of incoming data and flagging potential problems 
requiring detailed assessment. These tools need to be robust and 
efficient, both in their application as well as in their 
development. A hybrid model combines the in-house expert 
knowledge of GT operation, as well as taking individual 
settings and characteristics, to enable accurate monitoring of 
the unit’s measured data from the unit. A pure data-driven 
modeling of the GT performance requires complex statistical 
models, while on the other hand day- to- day monitoring  using 
complex 1st principle models of the GT is not efficient. By 
combining the two sources of information, we can have the 
“best of both worlds”. The main reasons to generate a surrogate 
model of a 1st principle performance tool are: 

 

• Faster than a 1st principle model, since there is no 
complex iterative solver once it is developed 

• The data validation functionality is not constrained by 
model equations 

• Can be applied to new plants with limited operating 
history, with increased allowable residual thresholds 

• Ease of integrating together different systems 
independently of the first principle model which 
generated the surrogate. Modular construction 

Physical Model Hybrid PIML Ground Truth

Observation
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Palmé Thomas et al. “Hybrid Modeling of Heavy Duty Gas 
turbines for On-line Performance Monitoring” (2014). 
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Use Case III : Fault Prognostics for Aircraft Engines

Challenge: Interpretable RUL prediction with sparse data

Prognostics

Remaining Useful Life
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Interpretable degradation prognostics with little data
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Hybrid approach is superior to data-driven model

Results: Robust RUL Prediction with little data 

(RMSE [cycles] = 6.79)  (RMSE [cycles] = 5.74)  

Data-Driven Physics-Informed (PI)
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Summary

Solar power plants Gas turbines Aircraft engines

Synthetic fault generation 
from healthy field data

Transfer learning: data-
driven calibration of a digital 
twin

Performance model 
interpretation using 
degradation data

Anomaly detection •Degradation trending
•Fault localization

RUL prediction with 
diagnostics

Early and accurate deployment with little field data
Interpretability & extension

Acceptance of domain experts

physicsdata physicsdata physicsdata
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