Physics-Informed Machine Learning for Predictive Maintenance Applied Use-Cases

Dr. Lilach Goren Huber Dr. Thomas Palmé Dr. Manuel Arias Chao

Smart Maintenance Team School of Engineering ZHAW

Smart Maintenance Team ZHAW

Lilach Goren Huber - ZHAW

Lilach Goren Huber - ZHAW

Physics-Informed Machine Learning

Physics-Informed Machine Learning

Physics-Informed Machine Learning

Use Case I : Tracker Faults in Solar Power Plants

Fault detection

Warning

Lilach Goren Huber - ZHAW

Use Case I : Tracker Faults in Solar Power Plants

Warning

Fault simulator using data + physics

FLUENCE

Results: Precision-Recall of Fault Detection

PI deep learning (DL) is superior to DL alone

Zgraggen, Jannik, et al. "Physics informed deep learning for tracker fault detection in solar power plants" (2022).

Use Case II : Fault Diagnostics of Gas Turbines

Diagnostics

Fault Type

Challenge: physical model does not cover unit-to-unit variability

Accurate predictions for a specific unit, also with little data.

Accurate predictions for a specific unit, also with little data.

Results: Degradation Trending and Fault diagnosis

Palmé Thomas et al. "Hybrid Modeling of Heavy Duty Gas turbines for On-line Performance Monitoring" (2014).

School of Engineering

General Electric

Hybrid approach is superior to physical model

Use Case III : Fault Prognostics for Aircraft Engines

Challenge: Interpretable RUL prediction with sparse data

Interpretable degradation prognostics with little data

Interpretable degradation prognostics with little data

Results: Robust RUL Prediction with little data

Hybrid approach is superior to data-driven model

Summary

Solar power plants	Gas turbines	Aircraft engines
Synthetic fault generation	Transfer learning: data-	Performance model
from healthy field data	driven calibration of a digital	interpretation using
	twin	degradation data
Anomaly detection	•Degradation trending	RUL prediction with
	•Fault localization	diagnostics
Early and accurate deployment with little field data Interpretability & extension Acceptance of domain experts		
data physics	data physics	data physics

Questions?

Dr. Lilach Goren Huber Dr. Thomas Palmé Dr. Manuel Arias Chao

Smart Maintenance Team School of Engineering ZHAW

