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Background & Motivation

◼ Information fusion has taken center stage in machine learning and

intelligent multimedia research and applications.

◼ The class based on canonical correlation analysis (CCA) [1] has

drawn wide attention.

◼ The family of CCA inspired methods relevant to this research:
̶ kernel CCA (KCCA) [2] and deep CCA (DCCA) [3].

̶ deep and discriminative CCA (DDCCA) [4]

̶ multi-view fractional deep CCA (MFDCCA) [5]

◼ State-of-the-art (Discriminant Correlation Analysis (DCA)): Making

use of between-class and within-class correlation matrices to extract

powerful discriminant information.

◼ The challenge (in real applications),
̶ even though the sample-based matrices are unbiased estimates,

̶ the corresponding eigenvalues are biased estimates.
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Background & Motivation-cont’

◼ A potential solution – the fractional-order (FO) algorithm [7].

◼ Ongoing research shows that integrating Statistics Guided Optimization

(SGO) with neural network (NN) architecture (SGO-NN) exhibits model

agnostic properties and is ideal for interpretable machine learning [39].

◼ A deep discriminant fractional-order canonical correlation analysis (DDFCCA)

method is proposed by integrating the architecture of NN with FO CCA, a

SGO algorithm.

◼ Functions of FO – correct eigenvalues in the correlation matrices, and then

construct FO discriminant correlation matrices.

◼ Hence, DDFCCA generates high quality information representation and an

intepretable model via

̶ Effectively extracting the discriminant information according to FO correlation

̶ Revealing the intrinsic nonlinear relation via the NN architecture from multiple

data/information sources.

̶ SGO-NN strategy
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DDFCCA (1)
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 Discriminant Correlation Analysis (DCA)

(1)

The mean vector values of x’ and y’ are:

Then, the two zero-mean variables sets x and y are expressed as

(2)
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DDFCCA (2)

(3)

The objective of DCA algorithm – find the two projected matrices Wx

and Wy in equation (4)

(4)

where

Mathematically, Lagrange multiplier and eigenvalue decomposition (GEV) 

algorithm are utilized to find the solution to (4).

ᵟ is a constant and 
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DDFCCA (3)

In order to discover the high level semantic relation across 

different inputs, a cascade layers-based network is applied to X 

and Y respectively, resulting in

(5)

(6)

Combining equations (5) and (6) leads to

(7)
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DDFCCA (4)

(8)

Substituting f(X) and f(Y) into (8) leads to

(9)

To solve the optimization problem in (9), the orthogonality constraints is 

imposed, leading to the following relation

 The Proposed Method
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DDFCCA (5)

(10)

(11)

(12)

where I is an identity matrix.

The total discriminant correlation between f(X) and f(Y) in DDFCCA 

is written in equation (11)

where tr is the trace of a matrix, and
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DDFCCA (6)

(13)

(14)

where Cf(X)f(X) and Cf(Y)f(Y) are the within-correlation matrices of two variable 

sets f(X) and f(Y), and the singular value decomposition of T is given as T 

= A · E · B’.

The gradient of corr(f(x),f(y)) is calculated as below

where
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DDFCCA (7)

The representation of the proposed DDFCCA model is depicted in Figure. 1.

▪ Deep denoising autoencoder [9] – initialize the values of parameters in the 

NNs. 

▪ Limited memory-Broyden-Fletcher-Goldfarb-Shanno optimization function [10] 

– minimize the local reconstruction error with a quadratic penalty.



Experiments and Analysis(1)

The performance of DDFCCA is evaluated on three recognition tasks:

◼ handwritten digit recognition, 

◼ audio emotion recognition, 

◼ object recognition. 

The value of α is set to (α = 0.1,0.2,...,1) and the optimal results are 

reported.
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Experiments and Analysis (2)
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Handwritten digit recognition-the MNIST database

▪ 60000 training images and 10000 testing

images.

▪ To avoid over-fitting, 10000 images from

the training subset are used for tuning

purpose.

▪ All samples are normalized to 28 × 28

pixels of binary values.

▪ The images are divided into 2 parts

(views): right half and left half of 14

columns each.

▪ DDFCCA is performed on the two parts

(views) and the optimal result is shown in

TABLE I.

▪ The optimal result achieves with a 3-layer

cascade network (1024-1024-50).



Experiments and Analysis (3)
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Audio emotion recognition-the RML emotional database

▪ Select 76 samples from each emotional state, resulting in 456

samples (76 per/emotion ∗6 emotions=456).

▪ For each emotion, 60 samples are for training and rest for testing.

▪ In total, 360 samples for training and 96 for testing

▪ Two audio features, Prosodic and mel frequency cepstral coefficient

(MFCC), are extracted

▪ Individual recognition accuracies are given in TABLE II.



Experiments and Analysis (4)
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▪ The two audio features 

fused by DDFCCA with 

the result shown in

TABLE III. 

▪ Optimal result obtained 

with a 3-layer cascade 

network (180-180-90).

▪ Performance by SOTA 

methods also tabulated 

for comparison. 



Experiments and Analysis (5)
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Object recognition-the Caltech101 database

▪ 30 images from each class are chosen as training samples and the 

remaining images are for testing. 

▪ Two fully connected layers fc6, and fc7 of a Alexnet architecture are 

employed for feature extraction.

▪ The classification accuracies of the two layers are given in TABLE IV.



Experiments and Analysis (6)
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▪ The extracted features by the 

two layers are fed into 

DDFCCA for information 

fusion. 

▪ The optimal result of 

DDFCCA achieves with a 3-

layer cascade network (1000-

1000-100) as shown in 

TABLE V.

▪ Performance by SOTA 

methods also tabulated for 

comparison. 



Summary

1. A discriminant fractional-order canonical correlation analysis

(DDFCCA) method is proposed with application to

information fusion.

2. Incorporated into a NN-based architecture, the fractional-

order based discriminant power generates high quality

representations of feature fusion.

3. Experimental results show the superiority of the proposed

DDFCCA method.
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