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Background & Motivation

Information fusion has taken center stage in machine learning and
intelligent multimedia research and applications.
The class based on canonical correlation analysis (CCA) [1] has

drawn wide attention.
The family of CCA inspired methods relevant to this research:

kernel CCA (KCCA) [2] and deep CCA (DCCA) [3].
deep and discriminative CCA (DDCCA) [4]
- multi-view fractional deep CCA (MFDCCA) [5]

State-of-the-art (Discriminant Correlation Analysis (DCA)): Making
use of between-class and within-class correlation matrices to extract
powerful discriminant information.

The challenge (in real applications),
even though the sample-based matrices are unbiased estimates,

the corresponding eigenvalues are biased estimates.
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Background & Motivation-cont’

A potential solution — the fractional-order (FO) algorithm [7].

Ongoing research shows that integrating Statistics Guided Optimization
(SGO) with neural network (NN) architecture (SGO-NN) exhibits model
agnostic properties and is ideal for interpretable machine learning [39].

A deep discriminant fractional-order canonical correlation analysis (DDFCCA)
method is proposed by integrating the architecture of NN with FO CCA, a
SGO algorithm.

Functions of FO — correct eigenvalues in the correlation matrices, and then
construct FO discriminant correlation matrices.

Hence, DDFCCA generates high quality information representation and an
intepretable model via
- Effectively extracting the discriminant information according to FO correlation

- Revealing the intrinsic nonlinear relation via the NN architecture from multiple
data/information sources.

- SGO-NN strategy

7/3/2023



DDFCCA (1)

[ Discriminant Correlation Analysis (DCA)

Suppose X’ = [x1,..Xv]€ R™N and y’ = [y1,...,yn] € RP*N are the two random
data sets, where N is the number of samples and m & p are the number of
dimensions of X’ & V.

The mean vector values of X’ and y’ are:

1 _"\T 1 "\,'
IM = T z_; Ti,YM = T Z_; Yi. (1)

Then, the two zero-mean variables sets x and y are expressed as

‘11 — L pN[g eesg TN — I\[]
y=[y1 —ym, ..., YN — Yuml. (2)
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DDFCCA (2)

The within-class correlation matrix is Copy = xDy" and between-class
correlation matrix is Chyy == 5xDy" [8], where § is a constant and

Hnlxnl ... O

D= E .Hmmm; E EERNMN'
0 B . (3)

The objective of DCA algorithm — find the two projected matrices Wx
and Wy in equation (4)
arg max W,1 C ’_,;_l, Wi (4)
where C ",:y = Cuw,, — Cb,, -

Mathematically, Lagrange multiplier and eigenvalue decomposition (GEV)
algorithm are utilized to find the solution to (4).
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DDFCCA (3)

In order to discover the high level semantic relation across
different inputs, a cascade layers-based network is applied to X
and Y respectively, resulting in

F(X) = gWi haa1+67), (V) = gW huoa +8). )

Then, converting parameters W%, b and WY bY (1<
i <d,1 <j<k) into the vector form leads to

Ox = WX, WX, .., WX bX bX, ..., bX],
Oy = [WY WY, ., WY oY Y, .. bY)

Combining equations (5) and (6) leads to

f(X) = f(X,0x), f(Y) = f(Y,0y). (7)
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DDFCCA (4)

1 The Proposed Method

A fractional-order operation is performed on the discriminant correlation matrix
(C';y) to extract the discriminant information across multiple data/information

sources. Equation (4) is rewritten as follows:

arg max W, T ( Cay) Wiy,

W W, ) (8)

where « is the fractional-order (a= 0.1, 0.2, ...,1).

Substituting f(X) and f(Y) into (8) leads to

argmax Wy(x)' (Crx)pv))*Wiy): (9)

Wix),Wiy)

To solve the optimization problem in (9), the orthogonality constraints is
imposed, leading to the following relation
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'DDFCCA (5)

~J

T o
argmax Wyix)" (Croxypv) Wiy,
WiooWror, (X) F(X)f(Y) (Y)
s.1.
(W) TFX) (X)) Weixy = 1, (10)

(W) TF) FY) Wy = I

where I is an identity matrix.

The total discriminant correlation between f(X) and f(Y) in DDFCCA
is written in equation (11)

corr(f(X), f(Y)) = tr(T’T)l/.‘z’ (1)

where tr is the trace of a matrix, and

~J

(Crx)ro)” - Cranypv)

N | =

- L (12
T'= Cr0px) o 2
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DDFCCA (6)

where Cyxix) @nd Ceyyqy) are the within-correlation matrices of two variable
sets f(X) and f(Y), and the singular value decomposition of T is givenas T
=A-E-B.

The gradient of corr(f(x),f(y)) is calculated as below
dcorr(f(X),f(Y))
f(X)

1
_ otr(T'T)?
 9f(X)

= w5 2Vix) o0 f(X) + Vixym f(Y))  (13)

where

N | =

| 1 _
Viosx) = —5Cr0p0 7 A E- A Cranpx) 7

N |-

Vicorw) =Crxypx) 2 A B Crvypr) 2 (14)
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DDFCCA (7)

= Deep denoising autoencoder [9] — initialize the values of parameters in the
NNs.

» Limited memory-Broyden-Fletcher-Goldfarb-Shanno optimization function [10]
— minimize the local reconstruction error with a quadratic penalty.

The representation of the proposed DDFCCA model is depicted in Figure. 1.
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Experiments and Analysis(1)

The performance of DDFCCA is evaluated on three recognition tasks:

handwritten digit recognition,
audio emotion recognition,

object recognition.

The value of ais set to (a = 0.1,0.2,...,1) and the optimal results are
reported.

7/3/2023



Experiments and Analysis (2)

Handwritten digit recognition-the MNIST database

= 60000 training images and 10000 testing

images. TABLE I
. T . E A S SO
= To avoid over-fitting, 10000 images from XPERIMENgIé}TR%&LITST §A$E§A}§%NDWRITTEN
the training subset are used for tuning
purpose. Method Recognition Accuracy
= All samples are normalized to 28 x 28 KCCA [2] 86.51%
pixels of binary values. Photonics-enabled CNN [11] 90.04%
= The images are divided into 2 parts DW-ELM-AE [12] 96.62%
(views): right half and left half of 14 DCCA [3] 96.87%
columns each. DCFA [13] 97.21%
: DDCCA [14 24
= DDFCCA is performed on the two parts DCCCCF 1[5] 234]3
(views) and the optimal result is shown in [15] e

» The optimal result achieves with a 3-layer
cascade network (1024-1024-50).

7/3/2023 13



Experiments and Analysis (3)

Audio emotion recognition-the RML emotional database

Select 76 samples from each emotional state, resulting in 456
samples (76 per/emotion *6 emotions=456).

For each emotion, 60 samples are for training and rest for testing.
In total, 360 samples for training and 96 for testing

Two audio features, Prosodic and mel frequency cepstral coefficient
(MFCC), are extracted
Individual recognition accuracies are given in TABLE II.

TABLE II

THE RECOGNITION ACCURACY OF A SINGLE FEATURE
ON AUDIO EMOTION RECOGNITION

Feature Recognition Accuracy
Prosodic 51.04%
MFCC 37.50%
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‘ Experiments and Analysis (4)

TABLE 111
THE RECOGNITION ACCURACY OF DIFFERENT

- The two aUdiO features METHODS ON AUDIO EMOTION RECOGNITION

fused by DDFCCA with Method Recognition Accuracy
the result shown in VGG-16 [16] 43,589
TABLE II. KCCA [2] 57.29%
= QOptimal result obtained PNCC [17] 58.33%
with a 3-layer cascade DCCA [3] 59.46%
network (180-180-90). Alexnet [18] 59.46%
» Performance by SOTA ALP Two-stage [19] 61.35%
methods also tabulated DCNN-DTPM [20] 62.40%
for comparison. DCA [21] 63.45%
DCFA [13] 63.54%
L-GrIN [22] 65.50%
Complete KECA+LDA [23] 65.63%
DDCCA [14] 65.63%
DDFCCA 68.75%
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Experiments and Analysis (5)

Object recognition-the Caltech101 database

= 30 images from each class are chosen as training samples and the
remaining images are for testing.

= Two fully connected layers fc6, and fc7 of a Alexnet architecture are
employed for feature extraction.

» The classification accuracies of the two layers are given in TABLE IV.

TABLE IV
RECOGNITION ACCURACY OF A SINGLE DNN BASED
FEATURE (CALTECH 101)

Feature Recognition Accuracy
fc6 77.84%
fc7 77.65%
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‘ Experiments and Analysis (0)

TABLE V
RECOGNITION ACCURACY OF DIFFERENT METHODS
(CALTECH 101)

» The extracted features by the

tWO |aye|"s are fed into Methods Recognition Accuracy
DDFCCA for information RNPCANet [24] 72.27%
fusion SRAAL [25] 90.00%
- PCANet [26] 89.98%
= The optimal result of CEMNN [27] 89.36%
DDFCCA achieves with a 3- ResNet-101(self-tuning) [28] 89.30%
layer cascade network (1000- Nieai ] o
. FSIL [29 44%
1000-100) as shown in DSSD ‘F;L”BL] jg 763
TABLE V. SDADL [31] 76.28%
» Performance by SOTA Superpixels-feature Fusion [32] 74.50%
methods also tabulated for AHGHLDE (3] W:ll%
. Spatial Pooling [34] 82.45%
comparison. MKL-SRC [35] 80.61%
Fcss [36] 83.00%
CovlLets [37] 74.70%
FPNN [38] 88.20%
DDFCCA 90.21%
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Summary

1. A discriminant fractional-order canonical correlation analysis
(DDFCCA) method is proposed with application to
information fusion.

2. Incorporated into a NN-based architecture, the fractional-
order based discriminant power generates high quality
representations of feature fusion.

3. Experimental results show the superiority of the proposed
DDFCCA method.
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