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Background & Motivation

◼ Information fusion has taken center stage in machine learning and

intelligent multimedia research and applications.

◼ The class based on canonical correlation analysis (CCA) [1] has

drawn wide attention.

◼ The family of CCA inspired methods relevant to this research:
̶ kernel CCA (KCCA) [2] and deep CCA (DCCA) [3].

̶ deep and discriminative CCA (DDCCA) [4]

̶ multi-view fractional deep CCA (MFDCCA) [5]

◼ State-of-the-art (Discriminant Correlation Analysis (DCA)): Making

use of between-class and within-class correlation matrices to extract

powerful discriminant information.

◼ The challenge (in real applications),
̶ even though the sample-based matrices are unbiased estimates,

̶ the corresponding eigenvalues are biased estimates.
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Background & Motivation-cont’

◼ A potential solution – the fractional-order (FO) algorithm [7].

◼ Ongoing research shows that integrating Statistics Guided Optimization

(SGO) with neural network (NN) architecture (SGO-NN) exhibits model

agnostic properties and is ideal for interpretable machine learning [39].

◼ A deep discriminant fractional-order canonical correlation analysis (DDFCCA)

method is proposed by integrating the architecture of NN with FO CCA, a

SGO algorithm.

◼ Functions of FO – correct eigenvalues in the correlation matrices, and then

construct FO discriminant correlation matrices.

◼ Hence, DDFCCA generates high quality information representation and an

intepretable model via

̶ Effectively extracting the discriminant information according to FO correlation

̶ Revealing the intrinsic nonlinear relation via the NN architecture from multiple

data/information sources.

̶ SGO-NN strategy

7/3/2023



DDFCCA (1)
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 Discriminant Correlation Analysis (DCA)

(1)

The mean vector values of x’ and y’ are:

Then, the two zero-mean variables sets x and y are expressed as

(2)
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DDFCCA (2)

(3)

The objective of DCA algorithm – find the two projected matrices Wx

and Wy in equation (4)

(4)

where

Mathematically, Lagrange multiplier and eigenvalue decomposition (GEV) 

algorithm are utilized to find the solution to (4).

ᵟ is a constant and 
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DDFCCA (3)

In order to discover the high level semantic relation across 

different inputs, a cascade layers-based network is applied to X 

and Y respectively, resulting in

(5)

(6)

Combining equations (5) and (6) leads to

(7)
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DDFCCA (4)

(8)

Substituting f(X) and f(Y) into (8) leads to

(9)

To solve the optimization problem in (9), the orthogonality constraints is 

imposed, leading to the following relation

 The Proposed Method
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DDFCCA (5)

(10)

(11)

(12)

where I is an identity matrix.

The total discriminant correlation between f(X) and f(Y) in DDFCCA 

is written in equation (11)

where tr is the trace of a matrix, and
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DDFCCA (6)

(13)

(14)

where Cf(X)f(X) and Cf(Y)f(Y) are the within-correlation matrices of two variable 

sets f(X) and f(Y), and the singular value decomposition of T is given as T 

= A · E · B’.

The gradient of corr(f(x),f(y)) is calculated as below

where
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DDFCCA (7)

The representation of the proposed DDFCCA model is depicted in Figure. 1.

▪ Deep denoising autoencoder [9] – initialize the values of parameters in the 

NNs. 

▪ Limited memory-Broyden-Fletcher-Goldfarb-Shanno optimization function [10] 

– minimize the local reconstruction error with a quadratic penalty.



Experiments and Analysis(1)

The performance of DDFCCA is evaluated on three recognition tasks:

◼ handwritten digit recognition, 

◼ audio emotion recognition, 

◼ object recognition. 

The value of α is set to (α = 0.1,0.2,...,1) and the optimal results are 

reported.
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Experiments and Analysis (2)
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Handwritten digit recognition-the MNIST database

▪ 60000 training images and 10000 testing

images.

▪ To avoid over-fitting, 10000 images from

the training subset are used for tuning

purpose.

▪ All samples are normalized to 28 × 28

pixels of binary values.

▪ The images are divided into 2 parts

(views): right half and left half of 14

columns each.

▪ DDFCCA is performed on the two parts

(views) and the optimal result is shown in

TABLE I.

▪ The optimal result achieves with a 3-layer

cascade network (1024-1024-50).



Experiments and Analysis (3)
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Audio emotion recognition-the RML emotional database

▪ Select 76 samples from each emotional state, resulting in 456

samples (76 per/emotion ∗6 emotions=456).

▪ For each emotion, 60 samples are for training and rest for testing.

▪ In total, 360 samples for training and 96 for testing

▪ Two audio features, Prosodic and mel frequency cepstral coefficient

(MFCC), are extracted

▪ Individual recognition accuracies are given in TABLE II.



Experiments and Analysis (4)
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▪ The two audio features 

fused by DDFCCA with 

the result shown in

TABLE III. 

▪ Optimal result obtained 

with a 3-layer cascade 

network (180-180-90).

▪ Performance by SOTA 

methods also tabulated 

for comparison. 



Experiments and Analysis (5)
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Object recognition-the Caltech101 database

▪ 30 images from each class are chosen as training samples and the 

remaining images are for testing. 

▪ Two fully connected layers fc6, and fc7 of a Alexnet architecture are 

employed for feature extraction.

▪ The classification accuracies of the two layers are given in TABLE IV.



Experiments and Analysis (6)
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▪ The extracted features by the 

two layers are fed into 

DDFCCA for information 

fusion. 

▪ The optimal result of 

DDFCCA achieves with a 3-

layer cascade network (1000-

1000-100) as shown in 

TABLE V.

▪ Performance by SOTA 

methods also tabulated for 

comparison. 



Summary

1. A discriminant fractional-order canonical correlation analysis

(DDFCCA) method is proposed with application to

information fusion.

2. Incorporated into a NN-based architecture, the fractional-

order based discriminant power generates high quality

representations of feature fusion.

3. Experimental results show the superiority of the proposed

DDFCCA method.
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