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Challenge

− Insurance advisors must handle a broad portfolio 

− SMEs often have unique requirements

− Impossible to talk to every customer about every coverage regularly

Goal

− Increase time efficiency in the advisory process 

− Customers really get what they need

− Diversify overall product portfolio in the SME field 

Proof of Concept

− Explore emerging field of graph-based recommender systems

Business Context
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Process Flow 
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Neighbor – based collaborative filtering with implicit feedback

− Bases recommendations on user similarity to the target user 

based on past preferences

− Assumption: similar people prefer similar things

− Feedback: Conclusion of a coverage 

Training

− Different months as train & test data

− Customers need to exist in both data sets

− Ca. 120'000 customers x 1'000 items

− Sparse data 

27.06.2023 4

items

u
se

r

Recommender Systems

February March



LightGCN

− Models similarity without user or item features

− Instead uses connections between users and items 

− Creates user embeddings and item embeddings based on 

neighbours 

− Size of neighbourhood (k) can be varied
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(Light) Graph Convolutional Neural Network
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Scoring

− Score = product of user & item embeddings

− PoC yielded scores between -10 and 30

− Good distinction between non-concluded and concluded 

coverages

− Mapping of score to binary recommendation via threshold

− Application via "highly recommended" vs "recommended"



Results & Next Steps
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Feedback so far

− General agencies made many appointments with customers

− So far 2-3 successful conclusions

− Lists helps to push more niche products and identify "gaps" in coverages

− New agents and big general agencies profit the most

Outlook

− Final quantitative and qualitative evaluation

− Potential integration into productive systems

− One-time deliveries to interested agencies
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Thank you!

Eva Morstein

eva.morstein@mobi.ch

Michael Gross

michaelralph.gross@mobi.ch 



References

27.06.2023 9

• Jure Leskovec, Federico Reyes Gomez, Weihua Hu, "Stanford CS224W Graph ML Tutorials". url: https://medium.com/stanford-cs224w

• Jure Leskovec, Lectures on Graph Neural Networks:

− url: https://web.stanford.edu/class/cs224w/slides/04-GNN1.pdf

− url: https://web.stanford.edu/class/cs224w/slides/05-GNN2.pdf

− url: https://web.stanford.edu/class/cs224w/slides/06-GNN3.pdf

− url: https://web.stanford.edu/class/cs224w/slides/07-theory.pdf

• Jure Leskovec, GNNs for Recommender Systems:

− url: https://web.stanford.edu/class/cs224w/slides/13-recsys.pdf

• Miguel Fierro, LightGCN - simplified GCN model for recommendation (Jupyter Notebook):

− url: https://github.com/microsoft/recommenders/blob/main/examples/02_model_collaborative_filtering/lightgcn_deep_dive.ipynb

• Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang & Meng Wang, LightGCN: Simplifying and Powering Graph Convolution 

Network for Recommendation, 2020

− url: https://arxiv.org/abs/2002.02126

− LightGCN implementation [TensorFlow]: https://github.com/kuandeng/lightgcn

• Thomas N. Kipf and Max Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017, 

url: https://arxiv.org/abs/1609.02907

• Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua, Neural Graph Collaborative Filtering, SIGIR, 2019, 

url: https://arxiv.org/abs/1905.08108

• Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems", in Computer, vol. 42, no. 8, pp. 30-37, Aug. 

2009, doi: 10.1109/MC.2009.263. url: https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf

• Jill Cates, Recommender Systems 101, url: https://medium.com/@topspinj/recommender-systems-101-bcbdfbe1e6e7

https://medium.com/stanford-cs224w
https://web.stanford.edu/class/cs224w/slides/04-GNN1.pdf
https://web.stanford.edu/class/cs224w/slides/05-GNN2.pdf
https://web.stanford.edu/class/cs224w/slides/06-GNN3.pdf
https://web.stanford.edu/class/cs224w/slides/07-theory.pdf
https://web.stanford.edu/class/cs224w/slides/13-recsys.pdf
https://github.com/microsoft/recommenders/blob/main/examples/02_model_collaborative_filtering/lightgcn_deep_dive.ipynb
https://arxiv.org/abs/2002.02126
https://github.com/kuandeng/lightgcn
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1905.08108
https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf
https://medium.com/@topspinj/recommender-systems-101-bcbdfbe1e6e7

	Slide 1: How to use a product recommender to make our customers even more happy
	Slide 2: Business Context
	Slide 3: Process Flow 
	Slide 4: Recommender Systems
	Slide 5: (Light) Graph Convolutional Neural Network  
	Slide 6: (Light) Graph Convolutional Neural Network  
	Slide 7: Results & Next Steps
	Slide 8
	Slide 9: References

