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Business Context

~ ﬂ,a Challenge
\ m/ — Insurance advisors must handle a broad portfolio
r/r:? . .
T > /&b — SMEs often have unique requirements
— Impossible to talk to every customer about every coverage regularly
& Goal
O | 1 — Increase time efficiency in the advisory process
- X
@ - — Customers really get what they need

— Diversify overall product portfolio in the SME field

Proof of Concept
— Explore emerging field of graph-based recommender systems
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Process Flow
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Recommender Systems

items
Neighbor — based collaborative filtering with implicit feedback Ha | M2 | Hs | e | s | B

— Bases recommendations on user similarity to the target user

based on past preferences
— Assumption: similar people prefer similar things
— Feedback: Conclusion of a coverage

P

Training
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— Different months as train & test data
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— Customers need to exist in both data sets . - 1 . - 1

— Ca. 120'000 customers x 1'000 items s e 1 N e ’
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(Light) Graph Convolutional Neural Network
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(Light) Graph Convolutional Neural Network
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Scoring
— Score = product of user & item embeddings
— PoC yielded scores between -10 and 30
— Good distinction between non-concluded and concluded
coverages
— Mapping of score to binary recommendation via threshold
— Application via "highly recommended" vs "recommended"

score
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Results & Next Steps

Feedback so far
— General agencies made many appointments with customers
— So far 2-3 successful conclusions
— Lists helps to push more niche products and identify "gaps" in coverages
— New agents and big general agencies profit the most

Outlook
— Final quantitative and qualitative evaluation
— Potential integration into productive systems
— One-time deliveries to interested agencies
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Thank you!

Eva Morstein

eva.morstein@mobi.ch

Michael Gross
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