la Mobilière

la Mobilière | Eva Morstein, Michael Gross

Business Context

Challenge

- Insurance advisors must handle a broad portfolio
 SMEs often have unique requirements
- Impossible to talk to every customer about every coverage regularly

Goal

- Increase time efficiency in the advisory process
- Customers really get what they need
- Diversify overall product portfolio in the SME field

Proof of Concept

- Explore emerging field of graph-based recommender systems

Process Flow

Recommender Systems

Neighbor – based collaborative filtering with implicit feedback

- Bases recommendations on user similarity to the target user based on past preferences
- Assumption: similar people prefer similar things
- Feedback: Conclusion of a coverage

		items						
		+H- 1	+H -2	++ -3	₩4	H 5	+H •6	
	52	1	1	1	?	0	0	
er	£,	1	1	1	1	0	0	
ns	A	0	0	0	1	0	1	
	A	0	0	1	0	1	0	

Training

- Different months as train & test data
- Customers need to exist in both data sets
- Ca. 120'000 customers x 1'000 items
- Sparse data

	Februar	y	March			
userID	itemID	target	userID	itemID	target	
± 1	H 1	1	4 1	H 1	1	
± 1	₩2	1	± 1	₩2	1	
± 1	₩3	1	1	₩3	1	
± 1	₩4	0	± 1	#4	1	
4 1	₩ 5	0	4 1	₩ 5	0	
± 1	₩6	0	± 1	# 6	0	
L 2	H 1	1	L ₂	+H- 1	1	
L ₂	H •2	1	L _2	# 2	1	
4 2	+H- 3	1	4 2	+#- 3	1	

(Light) Graph Convolutional Neural Network

LightGCN

- Models similarity without user or item features
- Instead uses connections between users and items
- Creates user embeddings and item embeddings based on neighbours
- Size of neighbourhood (k) can be varied

(Light) Graph Convolutional Neural Network

Scoring

- Score = product of user & item embeddings
- PoC yielded scores between -10 and 30
- Good distinction between non-concluded and concluded coverages
- Mapping of score to binary recommendation via threshold
- Application via "highly recommended" vs "recommended"

Results & Next Steps

Feedback so far

- General agencies made many appointments with customers
- So far 2-3 successful conclusions
- Lists helps to push more niche products and identify "gaps" in coverages
- New agents and big general agencies profit the most

Outlook

- Final quantitative and qualitative evaluation
- Potential integration into productive systems
- One-time deliveries to interested agencies

Thank you!

Eva Morstein eva.morstein@mobi.ch Michael Gross michaelralph.gross@mobi.ch

References

- Jure Leskovec, Federico Reyes Gomez, Weihua Hu, "Stanford CS224W Graph ML Tutorials". url: https://medium.com/stanford-cs224w
- Jure Leskovec, Lectures on Graph Neural Networks:
 - url: https://web.stanford.edu/class/cs224w/slides/04-GNN1.pdf
 - url: https://web.stanford.edu/class/cs224w/slides/05-GNN2.pdf
 - url: https://web.stanford.edu/class/cs224w/slides/06-GNN3.pdf
 - url: https://web.stanford.edu/class/cs224w/slides/07-theory.pdf
- Jure Leskovec, GNNs for Recommender Systems:
 - url: <u>https://web.stanford.edu/class/cs224w/slides/13-recsys.pdf</u>
- Miguel Fierro, LightGCN simplified GCN model for recommendation (Jupyter Notebook):
 - url: <u>https://github.com/microsoft/recommenders/blob/main/examples/02_model_collaborative_filtering/lightgcn_deep_dive.ipynb</u>
- Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang & Meng Wang, LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, 2020
 - url: <u>https://arxiv.org/abs/2002.02126</u>
 - LightGCN implementation [TensorFlow]: <u>https://github.com/kuandeng/lightgcn</u>
- Thomas N. Kipf and Max Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017, url: <u>https://arxiv.org/abs/1609.02907</u>
- Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua, Neural Graph Collaborative Filtering, SIGIR, 2019, url: <u>https://arxiv.org/abs/1905.08108</u>
- Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems", in Computer, vol. 42, no. 8, pp. 30-37, Aug. 2009, doi: 10.1109/MC.2009.263. url: https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf
- Jill Cates, Recommender Systems 101, url: <u>https://medium.com/@topspinj/recommender-systems-101-bcbdfbe1e6e7</u>