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Motivation



NZZ

Why use algorithmic recommendations?

A typical newspaper publishes ~100 stories/day.

For users is easy to miss important articles, due
to the high frequency and limited space on our
curated distribution channels (e.g. front pages).

Q At their core, news recommender systems

solve an information filtering problem.
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Goals of algorithmic content
recommendations in news
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Increase engagement and
subscription / retention °
Provide relevant recommendations so that o
users at all stages feel more informed and
. Engagement

become more engaged with the product
- Newly registered users exposed to more and -

diverse content are more likely to subscribe f;
- Subscribers' engagement is negatively gj

correlated with churn =

Engagement
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Responsibly address user needs and
uphold editorial judgement

FOMO
. . . Q
Design responsible recommendations, p——
mindful of the user's voice and / /
the newspaper's curation principles ) )
o
No personalization Too much personalization
Information overload Fear of filter bubble

What | am missing? What | am missing?
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Success factors of a
responsible content
personalization strategy
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Interdisciplinary, iterative, and experiment-driven approach

USER UNDERSTANDING
Address real user needs & concerns

Start smart and economically!
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Type of personalization Use case

Active personalization Front page

- Uses explicit user feedback « Already highly optimized

- Requires high up-front costs - Potentially, unclear value proposition or even

unwanted by users

Q Passive personalization Q Newsletters, article pages, user area
- Uses implicit signals from past behavior « Deliver value fast to users
- For easy gains, start here « Require less cross-departmental coordination
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Interdisciplinary, iterative, and experiment-driven approach

USER UNDERSTANDING TRANSPARENCY

Offer transparent value proposition,
in line with editorial values

Address real user needs & concerns

Start smart and economically!
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Transparency

Q) Highlight personalization
« Clearly mark algorithmically curated
areas in the product

Q Explainability
- Design explainable approaches
- Keep users informed and connected
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Interdisciplinary, iterative, and experiment-driven approach

USER UNDERSTANDING TRANSPARENCY

Offer transparent value proposition,
in line with editorial values

Address real user needs & concerns

Start smart and economically!

DATA & ALGORITHMS

Setup tracking, cloud infrastructure,

and in-house responsible algorithmic dev.
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Data & algorithms

Q) 1st party data
. tracking of rich behavioral data

Q Infrastructure
. cloud storage and processing

Development
Q - internal data science team for responsible
algorithmic dev.
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Use hybrid personalized recommenders, sorting relevant articles
along several explainable scores

Personal Score

Prefers personally relevant articles

- collaborative-based filtering: based on the
behavior of users with similar taste

content-based filtering: based on implicit
user history or explicit preferences

Trending Score

Prefers articles currently popular

Editorial Score

Prefers generally relevant articles,

as per our journalists
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Interdisciplinary, iterative, and experiment-driven approach

USER UNDERSTANDING TRANSPARENCY

Offer transparent value proposition,
in line with editorial values

Address real user needs & concerns

Start smart and economically!

EXPERIMENTATION

Define success metrics
A/B test consistently

DATA & ALGORITHMS

Setup tracking, cloud infrastructure,

and in-house responsible algorithmic dev.
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Experimentation

subscription

Q) Metrics
- Business metrics over algorithmic metrics
« Online experimentation over offline O
experimentation

CTR

Q Process
- Invest early in culture and platform
- Feature changes at least as important as
algorithmic changes
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Use Case:

Next Reads section on nzz.ch
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Fully algorithmically-driven next
reads section on the article pages

- many A/B tests over the course of 1 year
- both algorithmic & feature improvements
- two major deployments

Author Feed: sources articles from the same author
Topic Feed: sources articles from the same topic
User Feed: uses a balanced, hybrid personalized

approach to rank articles relevant to the user
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baseline
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baseline

vl
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baseline

v

v2
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Weekly CTR on content teasers in the entire section
improved on average by 48% and 73%, respectively®
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Average CTR uplift v1
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* The uplifts were

computed based on the
average weekly local metric
after the deployments in
comparison to the baseline
week set ahead.

Average CTR uplift v2
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Weekly completion ratio of recommendations in the
personalized user feed improved on average by 61%
and 78%, respectively”
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* The uplifts were

computed based on the
average weekly local metric
after the deployments in
comparison to the baseline
week set ahead.
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Further resources
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A history of responsible content personalization at NZZ in four
blogs by the data team

« 2021: Next-reads section on nzz.ch
« 2019: Nur Fur Sie on nzzas.ch
« 2018: Meine NZZ personalized newsletter from nzz.ch

« 2017: NZZ Companion App beta product


https://medium.com/@tweeting_cris/fully-redesigned-algorithmic-driven-next-reads-section-on-nzz-ch-4501e5919d66
https://medium.com/@tweeting_cris/fully-redesigned-algorithmic-driven-next-reads-section-on-nzz-ch-4501e5919d66
https://medium.com/@tweeting_cris/fully-redesigned-algorithmic-driven-next-reads-section-on-nzz-ch-4501e5919d66
https://medium.com/@tweeting_cris/the-value-of-responsible-personalization-in-news-recommender-systems-9c6aedd1ea5c
https://medium.com/@tweeting_cris/the-value-of-responsible-personalization-in-news-recommender-systems-9c6aedd1ea5c
https://medium.com/nzz-open/personalizing-journalism-how-we-are-creating-a-smarter-more-personal-news-experience-at-neue-b1d823f76c00
https://medium.com/nzz-open/personalizing-journalism-how-we-are-creating-a-smarter-more-personal-news-experience-at-neue-b1d823f76c00
https://medium.com/@RenePfitznerZH/data-science-for-a-smart-news-experience-35d316846d04
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Thank youl!
Questions?

Cristina Kadar, PhD
Data Science & Machine Learning Product Owner
@tweeting_cris
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Back-up
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Algorithmic design of
personalized recommendations
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All recommender systems consists of these three components

Candidate Pool

Create pool of eligible articles

e.g. by publication date, site section

Ranking

Sort articles by relevance

personalized (user-specific) or not
hybrid (several scores) or not

Post-processing

Apply filters and business rules

diversity guardrails or not
time decay or not
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Content-based approach for the
personal score

For each user, we compute daily their
implicit user profile = a set of 300D vectors
representing articles the user has read

() FastText word embeddings

For each candidate article, we compute
regularly its distance to the user profile

Q) Euclidean distance
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Final score used in the personalized feed

The personal, trending, and editorial scores score , USET, = w1l * personal_score , user,
are summarized in a weighted sum and b (e,

further business logic is applied
+ w3 * editorial score ,

apply time decay w.r.t. article s publication date

Q Reflects the principles of the newspaper &

filter out too similar articles
the characteristics of the use case



