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Where would you invest?
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Outline

1. Success prediction for venture capital

2. Fair success prediction for venture capital

3. Evaluating fair success prediction

4. Putting fair success prediction into practice
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How is a successful startup de�ned?

[1] Making it into a successful Series A Funding, accepted
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Successful startups receive Series A funding

[1] Making it into a successful Series A Funding, accepted
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Information available to predict startup success

[1] Making it into a successful Series A Funding, accepted
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Fair success prediction for venture capital
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How to measure fairness?

▶ Equal opportunity:

P(ŷ = 1|z = z1, y = 1) = P(ŷ = 1|z = z2, y = 1)
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How to measure fairness?

▶ Equal opportunity:

P(ŷ = 1|z = z1, y = 1) = P(ŷ = 1|z = z2, y = 1)

▶ Equal opportunity gap:

|P(ŷ = 1|z = z1, y = 1)− P(ŷ = 1|z = z2, y = 1)|
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How can fairness be achieved?
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How can fairness be achieved?

loss = losst + w1 · lossp1 + ...+ wn · losspn
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Baseline model 1

*company names are �ctional
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Baseline model 2

*company names are �ctional
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Protecting binary attribute USA: predict target
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Protecting binary attribute USA: predict target and protected
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Protect categorical attribute gender
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Protect multiple categorical attributes

▶ Protecting a single sensitive attribute can increase equal

opportunity gap

▶ Performance metrics remain at a satisfying level in our case

Model AUC EO

BL1 0.849 0.061
BL2 0.839 0.041
FM_country 0.847 0.070
FM_gender 0.859 0.065
FM_education 0.861 0.052
FM_university 0.853 0.054
FM_race 0.871 0.071
FM_ethnicity 0.843 0.071
FM 0.827 0.033
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Putting fair success prediction into practice

▶ Not su�cient to simply remove sensitive attributes

▶ Experts need to determine which attributes to protect in the

speci�c situation

▶ Gradient reversal can be employed to improve group fairness

▶ Trade-o� between performance and fairness can occur
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Q&A
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Let's connect

My contact details:

▶ Email:

wielandmichele@sunrise.ch

▶ LinkedIn:

Michèle Wieland
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