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SWITZERLAND APPROVED THE
“CLIMATE & INNOVATION” LAW

HAPPY CAMPAIGNERS HAPPY HOMEOWNERS

Key measure: Supportfor replacing heating systems
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TRANSFORMATION CHALLENGES

“Netbeheer Capaciteitskaart afname elektriciteitsnet
Bijgewerkt: 21-06-2023 10:30

Nederland
N

_ Rheine

Miinster

Hamm

* Fluctuationsof renewablepower production *  Network congestion
+ Benefits of demand-side flexibility [1] (EU, 2030) *  Benefits of demand-side flexibility [1] (EU, 2030)
+ +15.5TWhof renewable electricity * 11 bn€ to 29 bn€ saved in grid investment

 -43% to -66% lower balancing costs

[1] L. Fiorini, M. Miranda Castillo, and T. Slot, ‘Demand-side flexibility in
4 Managing the Uncertainty in Demand-Side Flexibilityfor Power Networks the EU: Quantification of benefits in 2030°, smartEn, Brussels, Sep. 2022 2 CsSem



POTENTIAL AND ACTIVATED DEMAND-SIDE FLEXIBILITY
(EU 2030)

Industrial combined heat Industrial electric District-level combined Behind-the-meter Residential electric
and power heating heat and power batteries Industrial load Vehicle-to-grid heating Smart eV charging
Power Energy Power Energy Power Energy Power Energy Power Energy Power Energy Power Energy Power Energy
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Data source: L. Fiorini, M. Miranda Castillo, and T. Slot, ‘Demand-side flexibility in the EU:
Quantification of benefits in 2030’, smartEn, Brussels, Sep. 2022
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OPTIMAL CONTROL

Input controls Measurements

Controller

Optimization objective,

constraints
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WHERE DOES THE UNCERTAINTY COME FROM?

7 Managing the Uncertainty in Demand-Side Flexibilityfor Power Networks & CSGm



HOW DO YOU CONTROL
60 MILLION
HEAT PUMPS?



INCREASING DATA EFFICIENCY

Simple physical
model

First training of O %
“digital twin”

* enerqy savings
% Retraining of 9y 9
“digital twin” with * more comfort

measured data

Learning control

rules by playing with
the “digital twin”

B. Schubnel, R. E. Carrillo, P.-J. Alet, and A. Hutter, ‘A Hybrid Learning Method for System Identification
and Optimal Control’, IEEE Transactions on Neural Networks and Learning Systems, 2020, doi:
10.1109/TNNLS.2020.3016906.

9 Managing the Uncertainty in Demand-Side Flexibilityfor Power Networks & Csem


https://doi.org/10.1109/TNNLS.2020.3016906

NON-LINEAR DATA-DRIVEN MODELS

Linear state space model +
kernel regression

Internal state variable
Commands + ext. parameters

/ noise
Trp1 = Axy + Buf + e

kTt Ek
Yk =
/

!/
Cxp + Duy + <.,
Room temperature

/'

Power consumption

299 wy, wk

||M2

Wy = (“U»zmyk)

10 Managing the Uncertainty in Demand-Side Flexibilityfor Power Networks

Encoder-decoder neural network
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ACCURACY VS. CONTROLLABILITY

Model accuracy Control performance
0.14 1
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Power exchanged with the grid (kW)
SMRAE T

B. Schubnel et al., ‘State-space models for building control: how deep should you go?’, Journal of Building Performance Simulation,
wvol. 13, no. 6, pp. 707—719, Nov. 2020, doi: 10.1080/19401493.2020,1817149.
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https://doi.org/10.1080/19401493.2020.1817149

EXPLOITATION OF FLEXIBILITY FROM
DISTRIBUTED RESOURCES

@points application m acquisition

Qbility computation

:= Csem @poin s computation

@bility activation request
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FLEXIBILITY ENVELOPES

« Quantification of flexibility over horizon:
« Achievable power
* Achievable duration

20

=. « Desired characteristics:

Qo
- 15 & - Data-driven
= = . : . .
= = * Risk aware: robust estimation with respect
"~ 108 to uncertainties

a,

= ' o :

-5 F 7\ _ Building = virtual battery
A=/ [ntegrate uncertainty in battery parameters
0.0 : : : 0

P. Scharnhorst, B. Schubnel, R. E. Carrillo, P.-J. Alet, and C. N. Jones, ‘Uncertainty-aware
0 6 12 18 24 flexibility envelope prediction in buildings with controller-agnostic battery models’. arXiv, Oct.
hD‘l.l[' 07, 2022. doi: 10.48550/arxiv.2210.03604

R. D’hulst et al., “Demand response flexibility and flexibility potential of residential smart appliances:
Experiences from large pilot test in Belgium,” Applied Energy, vol. 155, pp. 79-90, 2015
J. Gasser et al., “Predictive energy management of residential buildings while self-reporting
flexibility envelope,” Applied Energy, vol. 288, p. 116653, Apr. 2021
13 Managingthe Uncertainty in Demand-Side Flexibilityfor Power Networks @ Csem



https://doi.org/10.48550/arXiv.2210.03604

SAMPLE IDENTIFICATION

St+1 = St ++

time

14 Managingthe Uncertainty in Demand-Side Flexibilityfor Power Networks s Csem



MICROSERVICES FOR DEMAND-SIDE FLEXIBILITY

Forecasts e.g., weather, prices,
CO,, local production

—0.25

--- decrease potential [
h N A

--- increase potential [

—— baseline input

—0.50 4

=0.75 4

20

]

/ \ Flexibility request FleX|b|l|ty estimation
i.E.. e

Power consumption,
state

Pool of assets

NEON: Next-Generation Integrated Energy Services for Citizen Energy Communities, has received
funding from the European Commission H2020 Programme under Grant Agreement No. 101033700.
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EXPERIMENTAL VALIDATION

Predicted and measured state

0,8

0,6

SoC [%]

0,2

0
14.06.2023 15:00 14.06.2023 21:00 15.06.2023 03:00 15.06.2023 09:00
Mean Lower bound (5%) = Upper bound (95%) Actual SoC
* Industrial park of Las Cabezas (Villacafas, Spain) * Measured state within predicted range
* Informationused fordispatch
NEON: Next-Generation Integrated Energy Services for Citizen Energy Communities, has received
funding from the European Commission H2020 Programme under Grant Agreement No. 101033700.
= Csem
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SCALABILITY TESTING WITH OPEN-SOURCE LIBRARY

P. Scharnhorst et al., ‘Energym: A Building Model Library for Controller Benchmarking’, Applied Sciences, vol. 11, no. 8, p. 3518, Apr. 2021, doi: 10.3390/app11083518.
B. Schubnel, P. Scharnhorst, and M. Boegli, ‘Energym’. CSEM, Neuchatel, Jun. 30, 2022. [Online]. Available: https://github.com/bsl546/energym

17 Managingthe Uncertainty in Demand-Side Flexibilityfor Power Networks

Buildings Minimal Installation Getting Started Examples Full Installation Contributing APl Reference

AP| Reference

* Main Classes
© energym.envs.env
o energym.envs.env_fmu
o energym.envs.env_fmu_eplus
* Model Classes
© energym.envs.seminarcenter.seminarcenter
O energym.envs.apartments.apartments
O energym.envs.apartments2.apartments2
o energym.envs.offices.offices
o energym.envs.mixeduse mixeduse
o energym.envs.simple_house.simple_house
© energym.envsswiss_house.swiss_house
# Utils and Main Functions
o energym.factory
© energym.envs.utils.kpi
o energym.envs.utils.weather

Main Classes

energym.envs.env

class energyn.envs_env ENV [source]

The main Energym class to describe an abstract simulation environment.

It encapsulates an environment with arbitrary behind-the-scenes dynamics. An environment can be partially
or fully observed.

Available environments

Following environments are available:

Environment
Apartments2Thermal-ve
Apartments2Grid-ve
ApartmentsThermal-ve
ApartmentsGrid-ve
OfficesThermostat-v@
MixedUseFanFCU-v@
SeminarcenterThermostat-v@
SeminarcenterFull-ve
SimpleHouseRad-v@
SimpleHouseSlab-ve

SwissHouseRad-ve

« : present and controllable, € : present but not controllable, 3 : absent.

Thermostat

X X 4 2 4 4 8 ¢ ¢ <

x

Heat Pump

L 4L 4 & X X & <& @& <

4

packed into FMU's for windows and debian distributions.

Use the interface

import energym

envilame = "Apartments2Grid-ve”

Battery

L4

X X X X X X & € <

X

AHU

H AKX XX L X X X XX

XXX XX XX L & & 2
LR 2K 2K B b S KL 2L 2K

o
<

Software

E+

Control variables are outlined in yam! files for all environments in the simulation folder. Environment simulations are

An examplatory usage of Energym (assuming a function get_input() for computing the controls) locks as follows


https://doi.org/10.3390/app11083518
https://github.com/bsl546/energym

SCALABILITY TESTING WITH OPEN-SOURCE LIBRARY

sunRad
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APPLICATION: PEAK REDUCTION IN 10 BUILDINGS

45
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N
(6]
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N
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00:00 06:00 12:00 18:00 00:00

Committed flexibility
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mm Extra flexibility demand
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Actual consumption
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Baseline prediction
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SUMMARY

 Distributed flexibility essential for
cost-effective energy transition

- Scalability challenge requires efficient ML

« Uncertainty coming from incomplete
description, weather, people behaviour

- Battery-like modelling with uncertainty
guantification provides robust solution

- Experimental validation; simulated scale up

« Deployment as cloud microservice

20 Managing the Uncertaintyin Demand-Side Flexibilityfor Power Networks




CONTACT

Pierre-Jean Alet

Group Leader, Digital Energy Solutions
pierre-jean.alet@csem.ch

+41 32 720 5251
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