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Tokomak of ITER for Generating Fusion Energy

ITER ("The Way" in Latin) is one of the most ambitious energy projects in the world today
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A close-up view of an IBM quantum computer. The processor is in the silver-colored cylinder.
Stephen Shankland/CNET
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A Major Leap in Quantum Computing
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Article \ Published: 23 October 2019

Quantum supremacy using a programmable
superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis &

Nature 574, 505-510(2019) | Cite this article
752k Accesses | 282 Citations | 6004 Altmetric | Metrics

Abstract

The promise of quantum computers is that certain computational tasks might be executed
exponentially faster on a quantum processor than on a classical processor’. A fundamental
challenge is to build a high-fidelity processor capable of running quantum algorithms in an
exponentially large computational space. Here we report the use of a processor with
programmable superconducting qubits>>*567 to create quantum states on 53 qubits,
corresponding to a computational state-space of dimension 253 (about 10'6). Measurements
from repeated experiments sample the resulting probability distribution, which we verify
using classical simulations. Our Sycamore processor takes about 200 seconds to sample one

instance of a quantum circuit a million times—our benchmarks currently indicate that the
equivalent task for a state-of-the-art classical supercomputer would take approximately

10,000 years. This dramatic increase in speed compared to all known classical algorithms is an
experimental realization of quantum supremacy®%101112.13.14 for this specific computational

task, heralding a much-anticipated computing paradigm.
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Fig.1| The Sycamore processor. a, Layout of processor, showing arectangular
array of 54 qubits (grey), each connected to its four nearest neighbours with
couplers (blue). The inoperable qubitis outlined. b, Photograph of the
Sycamore chip.



The Most Powerful Quantum Computer Currently
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Disrupted

IBM launches its most powerful quantum
computer with 433 qubits

By Jane Lee v

November 9, 2022 3:07 PM GMT+1- Updated 7 months ago

IBM Quantum

omputer rendering shows IB
e processor unveiled in 2021, in t

I more thanthre times the qubis o the
fo IBMHandovt via REUTERS >

ubits Osprey quantum processor,
undated handout image. Connie Zh

Nov 9 (Reuters) - International Business Machines Corp on Wednesday said it
launched its most powerful quantum computer to date called the Osprey, a 433-
qubit machine that has three times the number of qubits than its Eagle machine

announced last year.

The number of qubits, or quantum bits, are an indication of the power of the

quantum computer which uses quantum mechanics, although different quantum

computer companies make different claims about the power of their qubits which

can be created many different ways.
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Major Concepts of Quantum Computing Zh

Qubits

Superposition

Entanglement

Quantum circuits
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Classical Bit vs. Quantum Bit (Qubit) #1
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Bit Qubit

(Classical Computing) (Quantum Computing)

0 0

Image source: https://cheapsslsecurity.com/blog/quantum-computing-vs-encryption-a-battle-to-watch-out-for/
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Classical Bit vs. Quantum Bit (Qubit) #2 Zh
Superposition on the Bloch Sphere aw

Quantum state O —,
10)

—__———-- —_———_—
- -
- -~

Quantum state1 1)

Vectors show the state |y> of a quantum system
Superposition = weighted sum of two states, i.e. a linear combination of 0 and 1
(quantum randomness)
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Entanglement #1

State 1:
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Entanglement #2

State 1:

State 2:
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A Quantum Circuit Consists of Quantum Gates

« Pauli-Gates: Rotation gates
« Hadamard-Gate: Creates superposition

« Controlled-Gates: Create entanglement

Zurich Universities of Applied Sciences and Arts

eeeeeeeeeeeeeee



Zurich University
of Applied Sciences

Contents y 4
aw

« What is quantum computing?

 How do we write a quantum program?

 How do we implement quantum machine learning?

Zurich Universities of Applied Sciences and Arts 14



Quantum Programming with Qiskit

e Qiskit = Quantum Information Science Kit

* Released by IBM in 2017
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Working with Single Qubit Gates Zh

« Pauli Gates:
« X-Gate: NOT-gate, rotation around x-axis
* Y-Gate: rotation around y-axis
« Z-Gate: rotation around z-axis (phase flip, + becomes -)

# Let's do an X-gate on a |0> qubit

qc = QuantumCircuit(1) '_
qc.x(0)
gc.draw() q

Zurich Universities of Applied Sciences and Arts 16



Showing the Result on the Bloch Sphere #1

Zuri

ich Universities of Applied Sciences an

qubit 0

|0)

‘ |

AW l A
\
>y
X
[1)

Initial state

d Arts



Showing the Result on the Bloch Sphere #2 Zh
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i qubit O
N 0
) /
y AN apply X-gate
N v i
X
(1)
Initial state State after applying X-gate
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Applying Y-Gate on Qubit 0 #1 Zh

gc = QuantumCircuit(1)
qc.y(0)
gc.draw() q

How does the state on the Bloch sphere look like?

qubit O
10)
‘ 1
= \
| TR
)
| oy
X F
[1)

Initial state
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Applying Y-Gate on Qubit 0 #2 Zh

gc = QuantumCircuit(1)
qc.y(0)
gc.draw() q

How does the state on the Bloch sphere look like?

qu%t) O qubit O
) O
. apply Y-gate Y
~11)
Initial state Same result as applying X-gate
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Applying Z-Gate on Qubit 0 #1 Zh

gc = QuantumCircuit(1)
gc.draw()

How does the state on the Bloch sphere look like?

qubit O
10)
‘ 1
= \
| TR
)
| oy
X F
[1)

Initial state
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Applying Z-Gate on Qubit 0 #2 Zh
aw

gc = QuantumCircuit(1)

qc.z(0) q .—

gc.draw()

How does the state on the Bloch sphere look like?

qubit 0 _
|0) qubc;t 0
N 180

. apply Z-gate

3
\_\ ‘ /T‘ ~
\ —_— ‘ | 7 ," \

r fﬁ;yy iy A

1) )

Initial state No change
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Create Superpositions with Hadamard-Gate #1

gc = QuantumCircuit(1)
qc.h(0) q—H8 -
gc.draw()

How does the state on the Bloch sphere look like?

qubit O
j0)

1)
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Create Superpositions with Hadamard-Gate #2 Zh

gc = QuantumCircuit(1)
qc.h(0) q-—H -
gc.draw()

How does the state on the Bloch sphere look like?

e oubito
t State is in a superposition
K/ \\ T \f. between |0> and |1>
b WA i X / /y (similar to a coin flip the probability

of 0 and 1 is 50/50)
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Combination of H-Gate and Z-Gate #1

gc = QuantumCircuit(1)

gc.h(0)
gc.z(0) q 4. —-_

gc.draw()

How does the state on the Bloch sphere look like?

qubit O
10)
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Combination of H-Gate and Z-Gate #2 Zh

gc = QuantumCircuit(1)
gc.h(0)

gc.z(0) # phase rotation by pi g — H —-—

gc.draw()

How does the state on the Bloch sphere look like?

uncgg 0 un(;t)V(\) qu%t) 0
o 4 x'/-_ 1 /7/ 'y N 7)/
Il) | ll) 1)
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Multi-Qubit Gates Create Entanglement Zh
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« CNOT-gate:
« Conditional gate
« Performs X-gate (NOT) on second qubit (target),
if state of first qubit (control) is 1
Assumption: qubits not in superposition

Input (t,c) | Output (t,c)

gc = QuantumCircuit(2) Qo —0— 0
# Apply CNOT
gc.cx(0,1) 1

# See the circuit:
gc.draw()

\
First qubit (least significant)

Second qubit

Zurich Universities of Applied Sciences an: d Arts 27

Amplitudes of 01 and 11 are swapped (|+>)
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Quantum Machine Learning Zh
aw

 ltis not clear how to best implement neural networks on a quantum
computer: open research question

« The field is still in its infancy

* Most approaches are theoretical based on quantum simulators or
experimental quantum hardware

« However, there are promising approaches for small problems

29



Approach 1:

Hybrid Classical-Quantum Neural Network #1

Classical neural network

Zurich Universities of Applied Sciences and Arts

Wg

X ... input

W ... weights

h ... hidden layers
y ... output

30



Approach 1: Zh
Hybrid Classical-Quantum Neural Network #2 aw

Classical neural network

W X ... input
%: @ (s) < w ... weights

) ® @ h ... hidden layers
@: - b y ... output

Quantum Circuit

1) l3) J
: N ——— ... quantum state
Initial State
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Approach 2: 4
Quantum Neural Network with Unitary Layers aw

* The whole network is implemented as a parameterized quantum circuit
« QNN with i layers: v (0)=u,(6,)u,,(6..)...U,(6,)

« U ... unitary transformation
o 0=[0,0._,....0]"set of parameters for the QNN

T4

q2

qs
1¥)

s ] vew U(62) U(8s)| U6 |5 | A2

(1) e
Pauli Z

Readout qubit: After applying i unitary transformations, the state of q,.,, should correspond to the real label

Zurich Universities of Applied Sciences an: d Arts
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Evaluation of Quantum Machine Learning - Zh

Datasets aw

Dataset #Features #Records #Classes

Iris 4 100 2
Rain 5 100 2
Vlids 5 100 2

Custom 2 100 2
Adhoc 3 100 2

Zurich Universities of Applied Sciences and Arts



Software and Hardware

Qiskit:

Python library for quantum computing by IBM

Quantum simulator:

By IBM
Can be installed locally or run on in cloud

Quantum computer:

By IBM
Publicly available via cloud

Zurich University
of Applied Sciences
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Open-Source Quantum
Development

https://qiskit.org/

A close-up view of an IBM quantum computer. The processor is in the silver-colored cylinder.
Stephen Shankland/CNET
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Evaluation of Different Quantum Neural Networks
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qo : { Ry (x0) |—:—| Ry (wp) I T IR_Y(CW2) |
| I
0 Ry (evo) H{Ry (w1)|— * Circuit 1

q2: «‘RY (x2) i IRY (cwy) HRY (w2) }—o—:—

d0 : | Ry (x0) Ry (cws)

Ry (wo

| |
m N ) T e
| |
q1: 4Ry (Xl) - Ry (Wl) —H Ry (CW()) T t C t 2
' ' Ircul
92 * <Ry (x2) Ry (w2) Ry (cwq) T l
| |
a3 | Ry (Xg) —:— Ry (W3) Ry (CWQ) :
Circuit 5
% : =Ry (xo) |-:-| Rx (wxo) H Ry (wyo) H Rz (wa0) | &
q - ~|RY (xl)jI E @ {Rx (wx1) H Ry (wy1) H Rz (WZI)} :
[
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g3 : 4Ry (x3) : & { Rx (wx3) H Ry (WyS) H Rz (w23) )_"_1_
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Metric = accuracy (between 0 and 1): higher is better

Dataset Classical NN QNN QNN
(Quantum Simulator)  (Quantum Computer)
Iris 1.00 1.00 1.00
Rain 0.70 0.83 0.79
Vids 0.94 0.93 0.95
Custom 0.64 0.74 0.75
Adhoc 0.61 0.80 0.75
Average 0.78 0.86 0.85

Quantum neural network (QNN) outperforms classical neural network (NN)
on specific datasets

R. D. M. Simdes, P. Huber, N. Meier, N. Smailov, R. M. Fichslin and K. Stockinger, "Experimental Evaluation of Quantum Machine Learning
Algorithms,” in IEEE Access, vol. 11, pp. 6197-6208, 2023, doi: 10.1109/ACCESS.2023.32364009.
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Experimental Results #2 Zh
Details on the Rain Dataset

Comparison of 5 different quantum circuits on
quantum simulator (left) and quantum computer (right)

device = quantum simulator Rain-Dataset = quantum computer
09 1 ﬁ
08 ¢ ! —— -1
L] : L]
Y1 ' N ' W T
.i L] ; L] optimizer
o
g 06+ 4 . R BN COBYLA
§ - Bl SPSA
= ¢ EEE AMSGRAD
05+ o - . . Il BFGS
+ L] L] ?
04 4 —_ -
L
0.3 b
T T T T T T T T T 1 T T T T T T T T
q_circui t_01 q_circuif t_02 q_circuif t_03 q_circuif t_04 q_circui t_05 q_circui t_01 q_circui t_02 q_circui t_03 q_circuif t_04 q_circuif t_05
arcuit drcuit

We can observe a high fluctuation of the results.
score = accuracy (higher is better)
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Conclusions

« Quantum machine learning is still in its infancy
« Currently we can only solve small problems

 Quantum hardware needs to mature and become
more fault-tolerant

« There is a steep learning curve to get into the topic
» First results are very promising

« Early movers have an advantage
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Experimental Evaluation of Quantum Machine
Learning Algorithms
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Corresponding author: Kurt Stockinger (Kurt Stockinger@zhaw.ch)

ABSTRACT Machine learning and quantum computing are both areas with considerable progress in recent
years. The combination of these disciplines holds great promise for both research and practical applications.
Recently there have also been many theoretical contributions of quantum machine learning algorithms
with experiments performed on quantum simulators. However, most questions concerning the potential of
machine learning on quantum computers are still unanswered such as How well do current quantum machine
learning algorithms work in practice? How do they compare with classical approaches? Moreover, most
experiments use different datasets and hence it is currently not possible to systematically compare different
approaches. In this paper we analyze how quantum machine learning can be used for solving small, yet
practical problems. In particular, we perform an experimental analysis of kernel-based quantum support
vector machines and quantum neural networks. We evaluate these algorithm on 5 different datasets using
different combinations of quantum feature maps. Our experimental results show that quantum support vector
machines outperform their classical counterparts on average by 3 to 4% in accuracy both on a quantum
simulator as well as on a real quantum computer. Moreover. quantum neural networks executed on a quantum
computer further outperform quantum support vector machines on average by up to 5% and classical neural
networks by 7%.

https://ieeexplore.ieee.org/document/10015720
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